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Abstract

SMILES (Simplified Molecular Input Line Entry System) is a sequential repre-
sentation of molecules. With the help of language models, the task of chemical
reaction prediction can be better approached. Our aim is to use less data from
actual lab experiments and computational resources in fine-tuning to achieve solid
performance on the chemical reaction prediction task by fully utilizing the benefits
of small language models. Our project proposes an effective dataset construction
methods along with investigation on a series of fine-tuning methods such as fixing
parts of the model, adding MLPs, and LoRA.

1 Introduction

With the help of sequential representation such as SMILES, molecules could be understood in a way
that is similar to text. Aided by the power of language models, we could use NLP techniques to
learn about chemical reactions. In our work, we focus on the particular task of chemical reaction
prediction problems: retrosynthesis (RS), which is to predict the reactants on the basis of the products
of chemical reaction.

While currently, there exist some large language models for this task, they require too much cost
in training and inferencing (in terms of time and computation) and are hard to optimize. Therefore,
we tried to fully utilize a small scale language model instead. We divide our work into 3 parts: 1.
proposing a data reconstruction methods that helps in creating dataset with shorter time and lower
cost. 2. investigate on how our proposed data collection methods may effect the performance of
full parameter fine-tuned model. 3. Try various methods in fine-tuning task to improve the model
performance.

In summary, our work shows that leveraging LLM-derived data is a viable way to mitigate data
scarcity, and that combining MLP or LoRA enhancements with partial parameter updates provides a
cost-effective, high-performing alternative to traditional, fully fine-tuned models for retrosynthesis
prediction.

2 Related Work

Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Prediction[1]. The
model treats reaction prediction as a machine translation problem between SMILES of reactants,
reagents, and the products. It introduced a multi-head attention Molecular Transformer model that
outperforms previous algorithms at that time. Molecular Transformer makes predictions by inferring
the correlations between the presence and absence of chemical motifs in the reactant, reagent, and
product present in the data set. This shows us that SMILES string as a sequential representation of
molecules, can be used as input to Transformer based model and acquires good result in chemical
reaction prediction task.
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LlaSMol models on the other hand are a series of state-of-the-art models that is based on large
language models and achieve top performance on a series of tasks.[2] With the help of large language
model. This shows that LLM has the capacity in modeling more complex and variant chemical
reactions. These papers are consistent with our goal of fully utilizing the capacity of smaller language
model with the help of large language model.

Chemformer, a model based on the BART architecture, has demonstrated its suitability for sequence-
to-sequence tasks, particularly in the domain of chemical reaction prediction, as highlighted in [3].
The paper shows the robustness of Chemformer as well as the model’s competitive performance
against existing ones. By leveraging the strengths of Transformer-based architectures, Chemformer
represents a pivotal step towards more accurate and scalable chemical reaction modeling. Furthermore,
the small scale LM offers a model pretrained on SMILES string reconstruction task which we would
further fine-tuned on downstream retrosynthesis task.

3 Approach

We first propose a data collection method and then use a BART-based transformer model[3] which is
pretrained on SMILES string reconstruction task to implement various fine-tuning methods.

In the data collection stage, we use LLM to predict the products of some expensive reactants or
reactions that may take a long time. Then we reconstruct the dataset based on LLM prediction and
the original dataset USPTO-50k[4].

In the fine-tuning stage, we use full parameter fine-tuning on the model as a baseline and test out
various methods such as fixing middle or end layers of the model, applying MLPs and run Lora
fine-tuning.

4 Experiments

4.1 Data

The dataset we are using is the USPTO-50K dataset, which is subset and preprocessed version of
Chemical reactions from US patents (1976-Sep2016) by Daniel Lowe[4]. It includes 50K randomly
selected reactions and is currently the main dataset used for chemistry machine learning research.

During our research process, we found that the current datasets are very limited. Most of them are
variants of the original USPTO datasets. This is because actual lab experiments can be both slow and
costly. So it would be quite difficult to construct or augment a dataset based on real experiments. To
address this, we came up with our own dataset construction method.

Our construction method is: Given a partially constructed dataset, in this case the original USPTO-
50K dataset[4], we use SOTA models (in our case LlaSMol[2]) to generate possible output data.
Constructing a dataset is way faster than running the actual lab experiments, thus can potentially save
resources and time.

Using this data construction method, based on USPTO-50K dataset, we also constructed our own
dataset, called USPTO-50K_γ, where γ is the rate which chemical reaction output labels were
replaced by LLM output, defined as

γ =
generated examples by LLM

Total examples

We would then run our experiments on both the original USPTO-50K dataset in finetuning and the
constructed USPTO-50K_γ dataset to investigate how LLM generated outputs effect the performance
of LM.

4.2 Evaluation method

The main evaluation metrics we used are: token_accuracy and molecular_accuracy.

Token accuracy is defined as

token_accuracy =
correct output tokens

all output tokens
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Molecular accuracy is defined as

molecular_accuracy =
correct reaction predictions

all predictions

For molecular_accuracy, we also included the accuracy of top K cases, we chose to report top 1, top
3, top 5.

4.3 Experimental details

We conducted experiments using the fine-tuning pipeline for the BART-based model configured
for the retrosynthesis task. The model architecture comprises a 6-layer Transformer-based encoder
and decoder, each with multi-head attention, feedforward layers, and LayerNorm components. The
embeddings are of size 512, with an inner feedforward layer dimension of 2048. The training
configuration included a learning rate of 0.001, a cyclic learning rate schedule, 100 epochs, and a
batch size of 64 in the task of different gamma ratio, 128 in the task of trying methods such as LoRA
and adding MLP layers. For different experiments, different treatments were applied, for example
the encoder and decoder weights were frozen, and MLP layers was inserted between encoder and
decoder or after decoder during training. The experiments were conducted with dropout set to 0.1,
using a pre-trained checkpoint. Our experiments all ran on NYU HPC, typically costs about 4 hours
for the fine-tuning task with a single Nvidia RTX8000 GPU.

4.4 Results

We report the results in the following tables.

Table 1 is the the results of BART-based model run on constructed dataset USPTO-50K_γ with
different gamma rates.

We observe that on the constructed dataset, as γ increases, the molecular level accuracy increases
with lower token accuracy than those models trained on original dataset. This is possibly because the
LLM is trained on much larger dataset and its prediction is based on all the knowledge, which is is
much more molecule-predictable and also easier to be learned by the model in fine-tuning compared
to the original dataset. This result reveals that the quality of the constructed dataset is solid and better
than the original dataset, and can be used for training purposes, saving huge time and resources.

Table 2 is the results of BART-based model with different treatments applied, ran on the original
USPTO-50K dataset.

Table 2 indicates that while token-level performance remains relatively stable across methods,
achieving highest molecular accuracy requires full parameter fine-tuning. Freezing decoder weights
is better than freezing encoder ones, and adding MLP layers after decoder further helps the model in
achieving close performance in molecular accuracy. The model that have the closest performance to
full parameter fine-tuning is Fixing decoder and adding MLPs after it.

Table 3 is the results of when the LoRA method is applied, with different treatments applied to
different groups, ran on the original USPTO-50K dataset.

LoRA stands for "Low-Rank Adaptation". It’s a parameter-efficient fine-tuning technique primarily
used in transfer learning and large language models. It allows for updating a small number of
parameters during fine-tuning by adding low-rank matrix updates to the original pretrained model’s
weights. This approach significantly reduces the computational and memory requirements. For our
model, we only apply LoRA layer on the output projection layers of the Multi-head Attention block.

Table 3 indicated that when only using LoRA fine-tuning, the performance of the model is similar to
the best one we obtained in Table 2. Furthermore, we observe that only adding MLPs after decoder
still gives better performance as in Table 2. However, Fixing encoder gives better result than fixing
decoder. Now, adding LoRA to our consideration, the best model we achieved in this case is: Fixing
encoder, apply LoRA on decoder, and add MLPs after the decoder.

We also notice that the prediction accuracy in table 1 when gamma is 0 is higher than those of table 2,
which is a result of different batch size used in the fine-tuning process. Due to hardware limitation
(out of memory), we have to run the experiment of USPTO-50K_γ dataset on batch size of 64 instead
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of 128 as we designed initially. As batch size can significantly influence training performance, the
results are not directly comparable across table 1 and others.

In general, We find that using LLM-generated data can yield performance better than the orig-
inal dataset. Moreover, introducing MLP layers or adopting LoRA-based fine-tuning strategies
significantly improves results, nearly reaching full-parameter fine-tuning benchmarks.

Table 1: Model Performance Across Different Gamma Rates
Gamma Test Mol Top 1 Acc Test Mol Top3 Acc Test Mol Top5 Acc Test Token Acc
1.0 0.7418 0.8234 0.8449 0.9755
0.9 0.7272 0.8041 0.8281 0.9747
0.8 0.6973 0.7922 0.8115 0.9740
0.7 0.6832 0.7731 0.8045 0.9743
0.6 0.6744 0.7658 0.7893 0.9764
0.5 0.6553 0.7512 0.7707 0.9768
0.4 0.6260 0.7416 0.7611 0.9776
0.3 0.6354 0.7227 0.7535 0.9787
0.2 0.5930 0.7057 0.7455 0.9773
0.1 0.5967 0.7088 0.7357 0.9779
0.0 0.5879 0.6928 0.7359 0.9788

Table 2: Evaluation Metrics for Different Treatments without LoRA
Treatment Test Token Accuracy Top 1 Accuracy Top 3 Accuracy Top 5 Accuracy
Full Parameter 0.9783 0.5634 0.6840 0.7220
Fix Encoder 0.9571 0.2556 0.3731 0.4077
Fix Decoder 0.9699 0.5113 0.6209 0.6875
Fix Decoder + MLP Mid 0.9677 0.4998 0.6117 0.6547
Fix Decoder + MLP End 0.9731 0.5355 0.6582 0.6852
Fix Decoder + MLP All 0.9722 0.5396 0.6381 0.6643

Table 3: Evaluation Metrics with LoRA
Treatment Test Token Accuracy Top 1 Accuracy Top 3 Accuracy Top 5 Accuracy
LoRA All 0.9742 0.5319 0.6489 0.6786
LoRA All + MLP All 0.9720 0.4904 0.6037 0.6422
LoRA All + MLP End 0.9738 0.5357 0.6470 0.6801
LoRA All + MLP Mid 0.9715 0.4959 0.6104 0.6404
LoRA Encoder + Fixed Decoder 0.9686 0.5045 0.6154 0.6523
Fixed Encoder + LoRA Decoder 0.9752 0.5534 0.6584 0.6937
Fixed Encoder + LoRA Decoder + MLP All 0.9750 0.5461 0.6507 0.6834
Fixed Encoder + LoRA Decoder + MLP End 0.9741 0.5479 0.6626 0.6937
Fixed Encoder + LoRA Decoder + MLP Mid 0.9742 0.5352 0.6453 0.6760

5 Future Work

We plan to apply distillation between LlasMol model and our Bart-based LM in fine-tuning as we
already observe that the LM generated output could help in producing a better fine-tuned model.
Apart from the original dataset that the model is trained on, distillation also takes the behavior of
LLM (LlasMol) into account when computing loss. This may help our model to be better fine-tuned.
Further more, we may consider better decoding strategy since our model gives potentially higher
token level accuracy but lower molecular level accuracy comparing to the baseline.

6 URL of our project repo and dataset repo

Project: https://github.com/scaliaven/NLP_project

Dataset(LLM generated along with original output): https://huggingface.co/datasets/
scaliaven/Ustop50k
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